Decided to do some research. Found this article, and this paragraph pertaining to CFL. My reason for preferring this type of light is based on price of bulb, energy costs, and most importantly, the bulbs stay cool, which IMO reduces fire risk.
http://web.uconn.edu/poultry/poultrypages/light_inset.html
Fluorescent lamps produce light by the passage of an electric current through a low-pressure vapor or gas contained within a glass tube. The ultraviolet radiation given off by the mercury-vapor arc stream produced along the length of the tube is absorbed by the phosphor material coating the inside of the glass tube, causing it to fluoresce at wavelengths that are seen as visible light. The wavelengths emitted depend upon the phosphors used in coating the tube. The new CF lamps all use a special triphosphor coating, resulting in light emitted in discrete wavelengths from each of the primary colors, red-orange, green and blue, giving an appearance of balanced white light. There are several styles of the CF lamps, including twin, quad and spiral tubes. They come in 5, 7, 9, 13, 16, 22, and 28 watt sizes with efficiencies of 50 to 69 lumens per watt and rated lifetimes of greater than 10,000 hours. Recent research has demonstrated that some may last more than 20,000 hours under poultry house conditions. However, these lamps will decrease their light output by about 20 - 30% over their lifetime, (Darre and Rock, 1995) and this must be considered upon initial installation. All fluorescent lamps require a ballast. The CF lamps have been used successfully in all types of poultry operations, including caged layers, (Darre, 1986) breeder flocks, growing broilers (Andrews and Zimmerman, 1990; Scheideler, 1990), growing pullets and turkeys. Research by Widowski, et al., (1992) indicated a preference for CF lamps over incandescent lamps by Leghorn layers.
Guess I'll have to go get some leghorns!!!
http://web.uconn.edu/poultry/poultrypages/light_inset.html
Fluorescent lamps produce light by the passage of an electric current through a low-pressure vapor or gas contained within a glass tube. The ultraviolet radiation given off by the mercury-vapor arc stream produced along the length of the tube is absorbed by the phosphor material coating the inside of the glass tube, causing it to fluoresce at wavelengths that are seen as visible light. The wavelengths emitted depend upon the phosphors used in coating the tube. The new CF lamps all use a special triphosphor coating, resulting in light emitted in discrete wavelengths from each of the primary colors, red-orange, green and blue, giving an appearance of balanced white light. There are several styles of the CF lamps, including twin, quad and spiral tubes. They come in 5, 7, 9, 13, 16, 22, and 28 watt sizes with efficiencies of 50 to 69 lumens per watt and rated lifetimes of greater than 10,000 hours. Recent research has demonstrated that some may last more than 20,000 hours under poultry house conditions. However, these lamps will decrease their light output by about 20 - 30% over their lifetime, (Darre and Rock, 1995) and this must be considered upon initial installation. All fluorescent lamps require a ballast. The CF lamps have been used successfully in all types of poultry operations, including caged layers, (Darre, 1986) breeder flocks, growing broilers (Andrews and Zimmerman, 1990; Scheideler, 1990), growing pullets and turkeys. Research by Widowski, et al., (1992) indicated a preference for CF lamps over incandescent lamps by Leghorn layers.
Guess I'll have to go get some leghorns!!!